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The propagating tensile fracture is treated as a steady state
dynamic mixed boundary value problem in which the displacement at
the fracture surface is specified. The displacement is made to
approximate a Griffith crack at all velocities of fracture propaga-
tion. Although the shape of the stress distribution curves are
identical to those determined by Yoffe, the magnitude of the
tensile stress immediately ahead of the fracture front decreases
with increase of velocity. The applied stress necessary to make
a fracture of unvarying shape propagate at any particular velocity
also decreases with increase of velocity. It appears that frac-
tures of unvarying shape propagate at a single velocity, and start

and stop without acceleration and deceleration. KN UTHor




1. INTRODUCTION

The propagating fracture problem has been treated by YOFFE¢
(1951) and BILBY and BULLOUGH (1954) as a steady state dynamic
boundary value problem. The fracture is initially in the form
of a very flat ellipse (a Griffith crack) which moves across a
medium under tension. The fracture is assumed to be of constant
length, with the medium healing behind the fracture.

f a propagating fracture has two drawbacks. First,
of course, a real medium never heals behind a fracture. Secondly,
while the fracture maintains a constant length, its shape changes
with velocity. The first of these drawbacks has been eliminated

by YOFFE (1951) by studying the region in the immediate neighbor-
hood of the fracture front of a very long fracture so that the
events at the tail end have very little effect. The object of

this paper is to examine the case of a moving Griffith crack the
shape of which does not change with velocity. This is, in effect,

a mixed boundary value problem in which the displacements are specified
for the moving part of the system. An additional impetus to this
study is that fact that displacements at real fracture surfaces

appear to be small at all velocities.



2. SHAPE OF THE YOFFE CRACK

Let the fracture, of length 2a, move in the positive x
direction with a velocity c (figure 1). The z axis is parallel
to the fracture front, while the y axis is normal to the fracture

surface. A stressjs;y = T is applied at », The stresses pi

J
around the fracture are to be determined. From symmetry, we may

study only tﬁe half-space y>o. If the applied stress T is removed
then, for Yoffe's problem, the moving parts of the system have the

following boundary conditions:
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u and v are the displacements in the x and y directions respectively.

From equation (10) of Yoffe we find
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where

c = fracture velocity
c1 = dilatation wave velocity
c, = transverse wave velocity.
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Expression (2) can be rewritten as

v = I (\-ﬂ’jf (o:'- X‘z)‘/l ) '
Mo [4pr - (14p*) ]

X and 4 are the Lame' constants.

Clear
Yoffe

shape

ly, v depends on the fracture velocity c¢. The shape of the
crack at various velocities is shown in fig. 2. At ¢ = o the

is a flat ellipse and closely corresponds to a Griffith crack,

but at higher velocities the Yoffe crack is no longer a flat ellipse

and can no longer be approximated to a Griffith crack. At the

branching velocity, for instance, = 1140 . 1
X =0

for a medium with a Poisson's ratio of 0.25. As Yoffe sets no

constraint on the value of T/U we assume the ratio is not very

small
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3. STATEMENT OF THE PROBLEM
A tensile fracture is here defined as a fracture caused by
purely tensile stresses acting at or near the fracture front and
surface. Hence the boundary conditions for a tensile fracture of

constant shape and length are, on y = o,

= ©0 for all x°
v = o for Y
cose (4)
s l/ ’
v = nat=x2)"2 v pdida

where n, the shape factor, is a small arbitrary constant. This
last expression insures that the fracture always approximates a
flat ellipse.

The solution can be obtained in a manner analogous to those
of YOFFE (1951) and BILBY and BULLOUGH (1954). We assume displace-

ments of the type

- 28T )
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where A(s) is an unknown function to be determined from the boundary

conditions. As y = o the expression for v becomes
2 S ,
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A comparison of the dual-integral equations (6) with equations (7)
of Yoffe shows that a solution of A(s) will be similar to that of

.
Yoffe, if the factor - T is replaced by n (B +1)
H (P™-1)

The expressions for the stresses are then, in the notation of BILBY

and BULLOUGH (1954)
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The expressions for the stresses can be considerably simplified
if one concentrates only on the region in the immediate neighborhood

of the fracture front. Let a coordinate system ([, & ) be defined

such that
X'~ =  (os @ and gy=r sin 9
and let
Z, = QA +rexp(ie) = a (14 ka exp(1g)]
2, = al1+keplain]
22 = aff. K,exp(46,)]
where
ki = kL1~ (<) sintg)
Ky = kol 1-(rep) arie)
tand, = ¥ tamd
tan g,= ptund
Por ()< ] we have
£ (20) = q (6n,k,.) = exp(-46n/2)
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The expressions for the stresses in the present case are, thus,

p

XX
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The stresses | , and are then calculated from
PGB Pf‘f‘ P"G
}:“ , b‘a and ey with the help of well known transformation
K’
relations (DURRELLI et al. 1958} .

The magnitude of the stress P‘c'r = T that has to be applied to
make the fracture propagate at any particular velocity can be
easily calculated and is given

48T — (1487
Pry = o [2E0 | eea(10)

4, RESULTS
The stresses | 6 p - and 'D 5 were computed on the Rice
Computer. The values of the independent variables used are:
Poisson's ratio ¢ = 0.25; relative fracture velocity c/c2
from 0.20 to 0.80; and € from 0° to 90°. The curves are
presented in figure 3. The applied stress Pyy was also computed

on the Rice Computer. Figure 4 shows the change in magnitude of

Pyy with increasing velocity.
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The shapes of the curves in figure 3 are identical to those
of YOFFE (1951) and differ only in magnitude. The branching ve-
locitics if such velocities exist, are identical to those given
in table 2 of MANSINHA (1964).

In the present case the stresses depend on i, the shear modulus
In Yoffe's problem the stresses were independent of all elastic
constants with the exception of Poisson's ratio. It would appear
at first sight that the results are independent of n, the shape
factor, as n appears as a common factor in all the expressions
pij' If true, this would mean that the results would be valid for
a moving disturbance of any unvarying shape. Such is not the case
because n has to be small for the boundary conditions to be wvalid.
Consequently the propagating fracture will always approximate a flat

ellipse.

5. DISCUSSION
From a study of figures 3 and 4 it will be presently shown
that a fracture of constant shape will tend to propagate at a
single velocity c, which is the same as the maximum velocity, e
It may safely be assumed that }%39 must attain a minimum value
T at any point ( s, @ ) ahead of the fracture before the

fracture can propagate. Thus the fracture can move forward only

if bé@ > & . The fracture will come to a stop if P, Y
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From figure 3 it can be seem that Pee decreases in magnitude
with increase of velocity. Therefore when ¢ > <, P86}<; E over
all & , and the fracture will stop suddenly. Clearly then cm
is the maximum velocity of propagation for a fracture of constant
shape. This velocity Cn will, in general, be different from the
branching velocity of YOFFE (1951).

The velocity Cn is also the only velocity at which a fracture

of constant shape propagates. Referrring to figure 4, it is seen
that the applied stress Pyy = T required to maintain a fracture
of constant shape moving at any velocity decreases with increase
of velocity. The magnitude of Pyy = T at ¢ = 0 is interpreted as
the stress required to form and maintain a Griffith crack of shape

(49 {aLl~—x’l)V2 . For our purpose let us assume that such a
static Griffith crack already exists in an unstressed elastic
body. Let a gradually increasing stress Pyy = T be applied to the
body. From figure 4 it is clear that for low values of Pyy the
fracture should move at high velocities. However, until P reaches
a value, say T , such that péca = L , the fracture will
be static. When ?%%5= t the fracture will move forward
at a velocity Cne

Let us suppose that the stress Pyy = T continue to increase

even after reaching the value T = T, Since this magnitude of P

m.
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is greater than that appropriate to a velocity S and the shape
factor n, two effects are possible. From expression (10) it is
clear that an increase in P will mean an increase in n, or a

Yy
decrease in c, or both. If n is constant, and c¢ decreases, from

1

figure 3 it will be seen that F%%H ;;, . over a large range
of angles. The fracture will lose energy by branching and will
therefore revert back to a velocity cm. If ¢ is constant and n
changes then the entire set of curves in figure 3 will be shifted
upwards, If the change in n is sufficient, Yoffe'!s analysis will
be more pertinent to the problem, and the fracture will lose
energy by branching after reaching the branching velocity cb.
Experimental evidence for the above set of conclusions is not
lacking. Most fractures have not been observed to change shape
significantly during propagation. In many cases fractures
appear to be able to reach a maximum velocity without branching
(SCHARDIN, 1959). SCHARDIN (1959) has also observed that no
fracture moving at the maximum velocity has been observed to
decelerate, Experimentally observed velocities which are lower
than the maximum may be due to a succession of stops and starts
or plasticity effects. The former has been experimentally observed
(MANSINHA, 1962). Extensive plastic deformation occurs at the tip

of static cracks because high stresses act at the tips for a

relatively long time. Further, as no physical mass is moving at
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the fracture velocity, it is not impossible for a fracture to
start and stop without acceleration or deceleration.

The main limitation of the present analysis is the fact that
quantitative estimates for cm and U cannot be made from the theory,
because of the presence of the arbitrary constants n and ko in
the expressions for pi,. However, experimental test of the
dqualitative conclusions can be made with high resolution equip-
ment to determine (1) if the stress field ahead of a fracture
mov ing at the maximum velocity changes just before the fracture
stops; (2) if the displacement at fracture surface changes with

Yelocity and (3) if low velocity fractures are essentially

different from those moving at the maximum velocity.

6. CONCLUSION

The propagating tensile fracture may be approximated by
a moving Griffith crack whose shape does not change with
velocity. The maximum velocity of this type of fracture is
determined by the fact that the stress ahead of the fracture
front decreases with velocity. The applied stress necessary to
make the fracture propagate at any velocity decreases with increase
of velocity. These characteristics imply that a moving Griffith
crack of unvarying shape moves at a single constant velocity,

without acceleration or deceleration.
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Fig. 2. Shape of the Yoffe crack at various velocities.
At zero velocity the shape is flat and coincident with the
x axis. Poisson®s ratio of the medium is 0.25.
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Fig. 4. Applied stress necessary to move a Griffith crack
~of unvarying shape at different velocities, The medium has
a Poisson®s ratio of 0.25,




